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ON ARITHMETIC VARIETIES I1

BY
DAVID KAZHDAN'

ABSTRACT

An arithmetic variety is the quotient space of a symmetric space with complex
structure by an arithmetic subgroup of the associated algebraic Lic group. It is
shown that the variety obtained from an arithmetic variety by a base change
corresponding to any automorphism of C is again an arithmetic variety.

Introduction

Let G be an algebraic simple Q-group, G the set of real points of G and
K C Ggr a maximal compact subgroup.

We assume that there is a Ge-invariant complex structure on the symmetric
space D = K\ Gr and we will always consider D as a complex manifold. Let
I’ C G be an arithmetic subgroup without nontrivial elements of finite order and
let X; = D/T'. X; has the natural structure of a smooth complex manifold. Such
complex manifolds X = X, will be called arithmetic varieties. It is known
([1].[11]) that there exists an imbedding X — P"(C) such that the closure X of X
is a normal variety, and Y = X — X is a subvariety in P. Moreover, if dim D > 1
then a multicanonical bundle Q%®* on X defines such an imbedding and in this
case codim Y > 1. We will assume that dim D > 1 and that an imbedding X — P"
is a multicanonical one. We will call X “the canonical completion of X”.

By Chow’s Theorem X is algebraic and we will denote by X, the correspond-
ing algebraic C-varieties.

For any o € Aut C we denote by X7 the algebraic variety obtained from X, by
the base change and by X° the complex variety of C -points of X2. We denote

def

by X“ CX° the open subvariety which corresponds to X3 = Xg— Ye.

MAIN THEOREM. For any o € AutC the variety X° is arithmetic.
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140 D. KAZHDAN Isr. J. Math,

[t is easy to see (lemma 0 in [S]) that it suffices to prove the Main Theorem for
torsion free subgroups.

Let M be a reductive Q-group and ¢ : H— G be an algebraic morphism. We
say that ¢ is admissible if

(a) Ky E ¢&'(pr(Hr) N K) is a maximal compact subgroup of Hpg.

(b) ¢ : Dy— D is an imbedding where Dy = Ku \ Hr.

(c) The image ¢(Dy) is a complex submanifold of D.

We say that G is a classical group if there exists an admissible morphism
¢ :G—Sp(2N, ) for some N. It is proved in [2] and [3] that

(a) The Main Theorem is true for classical groups.

(b) If G is a simple, nonclassical Q-group, then G = Ry,o(G) where k is a
totally real number field, G is an absolutely simple k-group of type D,, e = 4 and
Gr has factors of types DX and D¥ or G is of type E, or E, and G is obtained
from G by restriction of the scalar field from k.

In the next paragraph we outline our approach to the proof of the Main
Theorem and give a very sketchy proof in the classical case.

RemMARk. This theorem was proved in [5] for anisotropic groups and our
proof will go along the same lines. As [5] is not an easily readable paper we will
try to refer only to the first two paragraphs of [5]. We start by recalling some
general facts.

NotaTiOoN. (1) For any algebraic C-variety X we denote by X the set
C-points of X considered as an analytic variety.

(2) For any analytic variety X we denote by G(X) the group of analytic
transformations of X.

(3) For any manifold X and a point x € X we denote by Tx(x) the tangent
space to X at x.

(4) For an arithmetic variety X we denote by X the canonical completion of
X, by Y the complement Y = X — X and by j : X <> X the natural imbedding.

(5) For any group G we denote by e the identity element.

(6) For any group G acting on a set S and a subset TCS we denote by
Sts(T)C G the stabilizer of T in G.

I want to thank Phillip Griffiths, Barry Mazur, David Mumford and Boris
Weisfeiler for very helpful discussion, and I want to thank Goro Shimura for
showing me a gap in the first draft of this paper.

§1. We start by recalling some concepts and results from [S]. For any
o € AutC we consider X° the complex variety corresponding to an algebraic
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C-variety XJ. We denote by (2 the intersection of all subgroups of finite index in
m(X”), by the D* BLAENS ' covering of X° corresponding to {} and by

def

" = ,(X°)/Q the Galois group of this covering. We denote by G(D*) the
group of analytic transformations of D and identify I with a subgroup of

G(D°).
For any g € G, we consider the complex variety R, = DT, for Iy, =
I'N g 'T'g and two projections

— 1 5
Rg—qz—’X

which correspond to two evident imbeddings

r, —=3T.

It is clear that q;, g are finite unramified coverings of X. Therefore there exists a
unique algebraic C-variety R, and two unramified coverings

R, —= X
such that

(4y)¢:

q, ~ ~
(Rg M— X) =(Ry)e =53 (Xe.
For any o € AutC we denote by
o —ﬂ——‘) a
R; —//— X
the diagram of complex varieties corresponding to
Rg _,g_>”—:7—’ Xe.
Of course g5, g5 are finite unramified coverings of X°.

LemMA.  Construction 1. (a) R defines some double I'*-coset M, in G(D*).
(b) Usea,M; is a subgroup in G(X°) which we will denote by G°.

The construction and the proof are contained in §1 of [5].

Let H—— G be an admissible morphism, I'C Gqo be an arithmetic group,
Tw= 03 (pa(Ho) NT). It is clear that 'y is an arithmetic subgroup in Hg and
@ : Dy — D identifies Xy = Dy, /T with an analytic subvariety in X = D/T. It is
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well known that there exists an algebraic subvariety X, . in X, such that
Xu = (Xu.o)e Let X5 = (X%.a)e CX° be the corresponding subvariety in X*
and 'D% be a connected component of (p°) '(X%) in D°.

def

LEMMA 2. (a) For any h € Hyg the intersection M, = M, N Stgx~('D %) is not
empty.

(b) The union 'H° = U,.EHO’M,, is a subgroup in G°.

(c) There exists a normal subgroup A CH such that ACI'f,,'H° =~ H° /A and
'Df= DH/A.

Proor. Clear. O

CoroOLLARY. If the Main Theorem is true for H then 'D7Y, is a Hermitian
symmetric space and 'H? is dense in G('Df).

PrOOF. Also clear. ad

PrOPOSITION 1. Assume that:

(a) The Bergman metric (see [6]) pp- is not degenerate.

(b) The closure G° of G* in G(D?) acts transitively on D”.

(c) There exists a G° -invariant volume form pp- on D such that [x- pp- <.
Then X° is an arithmetic variety.

ProoF. By the assumption D° is a homogeneous complex variety with a
nondegenerate Bergman metric. By [11] D is a Hermitian symmetric space
D° = K”\ Gg. Itis clear that dup- is G invariant volume v on D°. Therefore

v(K° \G‘.{/I“’)=Lq dppe <.

It follows now from Margulis’s theorem ([8]) that I CGR is an arithmetic
subgroup. a

For G =Sp(2n, ) the Main Theorem was known long ago (in this case X
may be interpreted as a moduli space M for polarized abelian varieties with
additional rigidity structure and M° =M for all o € AutC if I' is an approp-
riately chosen arithmetic subgroup).

If G is a classical group, then an admissible morphism ¢ : G —Sp(2N, )
induces the imbedding ¢ : X — M. Therefore we have X°—> M =M and
'Dg C ¥ where ¥ is the Siegel upper ‘“halfplane”. In this case, instead of the
Bergman metric pp- on’D % we can take the restriction of the Bergman metric px
on 'D,. Although we cannot apply Proposition 1, we could finish the proof by
making use of arguments from the second part of [S]. In any case, the Main
Theorem is known [3] for classical groups.
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Unfortunately for nonclassical groups, no modular interpretation for X is
known and we will examine the cornditions of Proposition 1 directly.

REMARK. In the case when X is compact we can easily prove the Main
Theorem using the Calabi-Einstein metric on X([16]).

§2. We will assume from now on that a simple isotropic Q-group G is of type
R.o(G) where k is a totally real number field and G is an absolutely simple
k-group of type D;, I >3, such that Gg has D} and DY factors or G is an
absolutely simple k-group of type E, or E;. We will call such G *“‘our groups”.
As before, let K be a maximal compact subgroup in Gg, D = K\ G be the
corresponding Hermitian symmetric space, I'C G, be an arithmetic subgroup
without elements of finite order, X = D/I' be the corresponding arithmetic
variety, X be the canonical compactification of X and Y =X — X.

ProposiTION 1. Let G be one of our groups. Then (a) codim Y >3, (b) there
exists a semisimple Q-group H and an admissible morphism ¢ : H— G such that
dim Y <dim D,, <dim X and there exists a torus T CH such that (Tg) is a
compact Cartan subgroup of Gr.

We start the proof with the following

LemMA 1. Let G be one of our groups G = Ry ,o(G). Then

(o) If Gis of type D, and a be the number of imbeddings k —— R such that the
corresponding real group G is of type D¥(=~ SO (21 — 2,2)) and b be the number of
imbeddings k — R such that Gg is of type D (=SO*(2)), then

dimcx=a(21—2)+b’—(’2;1) and dimcY <a +b ’_22’_3.

(B) If G is of type E., then

dimX =16-(k:Q] and dimY =5[k:Q].
(v) If G is of type E,, then

dim X =27[k :Q] and dimY =10[k :Q].

This lemma follows immediately from theorem 4.13 in [7]. a

Part (a) from Proposition 1 follows immediately from this lemma.

If G = Riq(G) is a simple Q-group and x is a distinguished vertex of the
Dynkin diagram of G we denote by M, C G the semisimple part of the Levy
component L, of the parabolic subgroup P in G which corresponds to x. (See
[15].) Let V, = Centralizerg(M,), H, = Re,o(M; - V).
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LemMa 2. If D = K\ Gg is a Hermitian symmetric space and dim; V. > 1.
then the natural imbedding H, — G is an admissible morphism.

PROOF OF LEMMA 2. It is clear that V, is a reductive k-subgroup in G. Let
k = Q be the algebraic closure of k. Since rki(M,) =rk;(G)— 1, we know that
rk;(V,)é 1. Therefore V, is a k-form of A,.

Consider V = Ry o V.and M = Rk,QM,. Let S, be a maximal compact torus in
Ve and S, be the one in M. It is clear that S = S, S, is a maximal compact torus
in Gr. Since the k-variety of maximal tori in G is a k-rational variety (see exp.
XIV, th. 6.2 in SGA3), it is clear now that there exists a Q-torus T C H, such that
Te C Gr is 2 maximal compact torus in Gr. We take K C G to be the maximal
compact subgroup containing Te. Then tangent subspace Tp,(e)CDy(e) to
Dy C D is invariant under multiplication by V= 1. Therefore the same is true
for all points d € Dy, and Dy, is a complex submanifold of D. Lemma 2 is
proved. ]

To finish the proof of Proposition 1 we will point out for any of our groups G a
vertex x satisfying conditions of Lemma 2 and such that dim D,,, > dim Y. We
will be using the classification of simple k-groups from [15].

If G is an isotropic k-group of type D, and

=

is the Dynkin diagram of G, then the vertex x second from the left is a
distinguished one, and (as follows from the shape of the extended Dynkin
diagram for D;) x satisfies conditions of Lemma 2. It is clear that

dim D,y =2a +b( ’_321_2 +1>>dim Y.

(For | =4 we take x to be the center of the Dynkin diagram.)
If G is of type E., then it follows from the table on page 59 in [15] that the

index of G is either
*E3, &——-C:: or
- @ or
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Lemma 3. If G is any k-group with index *EZ’, then the symmetric space of G
is not Hermitian.

PROOF. Let HC G be the anisotropic kernel of G ([15]). It acts on a
maximal unipotent k-subgroup U of G. Since dim[U, U] = 8, the action of H on
[U, U] identifies H with an orthogonal subgroup of End, [U, U]. Now it follows
from the classical Hasse Principle that there exists a completion ky of k such
that H @Spec kv is anisotropic, and therefore kv = R. The corresponding real
group L =G @Spec kv has the index 'EZ% and the corresponding symmetric
space is not Hermitian. As L is a factor of Gg the symmetric space of Gy also
does not have an invariant complex structure. d

So we may restrict attention to groups with indices 2EZ’ and *E.%. Let x be the
left distinguished vertex. It is clear that x satisfies the conditions of Lemma 2 and
dim Dy, =6-[k : Q] >dim Y.

Consider now the case when G is of type E,. Then the index of G is either E3)
or E3%. Let x be the right distinguished vertex. Then D, C D is a complex
submanifold and dim D, >dim Y. Proposition 1 is proved.

In the future, we will always assume that the Main Theorem is known for H.

§3. We will study in this paragraph different G°-invariant analytic objects on
D

But in the beginning we will restate some results from [5].

For any d € D we denote by G, C G the stabilizer of d in Go and by y, the
natural representation x4 : Gs — Aut T, (d).

Let d° € D° be a point such that (p(d))” = (p“)(d”). Define G,- C G to be
the stabilizer of d°, let y4- : Ga» — Aut Tp-(d”) be defined in the same way as x4
and denote by a, : Tp(d)— Tp-(d”) the composition

3

To(d)—2 Tu(p(d)) == Tx- (p(d)')— To=(d").
LEMMA 1. There exists an isomorphism ¢, : G; — Ga- such that aq° xa(y) =
Xao (pa(y))° aa for all y € Ga.
This lemma is also proven in §1 of [5].

DEFINITION.  We say that d €D is a CM-point if there exists a maximal
Q-torus H in G such that Ho C G,

LemMa 2. If d is a CM-point in D, then the closure H® (in the usual topology )
of xa-(Ga) in Aut Toe(d”) contains the multiplication by V —1.
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Proor. For any algebraic Q-torus H we denote by H the group of algebraic
characters of H over C. H is a free abelian group with a natural action of Aut C.
We denote it by o: h—h° for o € AutC, h € H.

By definition we have (h(h ))” =(h°)(h) for any ¢ € AutC, h € H and
h € Hq. It is easy to observe (see, for example, lemma 18 in [5]) that for any
o € AutC there exists an automorphism o : h —h of Hc such that h°(h)=
h(h”)forall h € H, h € Hc. Assume now that Hg is a compact group. Then it is
a unique maximal compact subgroup of Hc and therefore ¢ maps Hg onto itself
for all o € AutC. Let now d € D be a CM-point. We consider the representa-
tion xa = xa= © Xa : Ho— Aut Tp-(d?). As follows from Lemma 1 there exists a
C-linear operator ¢ : Tp(d)— Tp-(d”) such that x5(h)=co(xa(h)) oc™' for
h € Ho. We will consider ys : Ho— Aut T, (d) as a restriction of an algebraic
homomorphism ys : Hc— Aut Tp{(d) and rewrite y3(h)=coxs(h")ec".

Let Hg be the connected component of identity in Hg and Hy = Ho N Hy. H
is dense in Ha. Therefore the closure H® of x4 (Ga-) contains ¢ © x,(H)oc™".
Since Hg is compact Hz= Hg and H® Dcoy,(Hr)oc '. Since D admits an
invariant complex structure there exists ho € Hg such that x4 (ho) = V —11d. The
lemma is proved.

LEMMA 3. Let Z C D¢ be a nonempty complex analytic G°-invariant subvari-
ety such that Z = p°’(Z)C X" is algebraic. Then Z = D”.

PrOOF. The arguments which are used in the proof of lemma 3 in [5] are
applicable here. O

COROLLARY 1. Let ZCD* be a complex irreducible G -invariant analytic
subvariety such that dim Z > dim Y, where as always Y = X — X. Then Z = D*
or Z =.

PROOF. Z =p°(Z)C X" is an irreducible analytic variety. Therefore Z U
Y? C X° is =-analytic subvariety (cf. [10]) of X“. By theorem 4.5 in [10] it is
analytic and by Chow’s Lemma algebraic subvariety in X*. O

Consider now the real semisimple group Gg, and write it as a product of
simple groups Ge =1II;.; Gi. Then D =1Ii_, D; where D; is the symmetric space
for Gi and the tangent bundle T, decomposes into the direct sum T, =
@L, T.p. This decomposition induces the decomposition Tx = (J;_, Tix. To
prove algebraicity of T,x we will use the following

LEMMA 4. Let M be a normal projective algebraic variety, M C M be an open
subset such that N = M — M is analytic, codimuz N > 1 and all points of M are
smooth.

Let W C Ty be an analytic subbundle. Then W is algebraic.

get
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ProoF. Let M —P" be a projective imbedding and k = {Dimension of a
fibre of W}. Then W defines an analytic map

¢ : M —>Gr,x = {The variety of k-planes in P¥}.

By [14] ¢ is extendable to a meromorphic map & : M — Gr,n. By Chow’s
Lemma ¢ is algebraic. 0

So T, x is an algebraic subsheaf of X and we can define decompositions
Txe = EB:=] T.x- and Tp- = i=1 Tip-.

DerFIniTION.  Let N be a complex variety and ~ be an equivalence relation
on N. We say that ~ is analytic if r= {(n,,n,)ENXN I n,~ny} is a closed
analytic subvariety in N X N. Assume that N —-> M is an unramified Galois
covering with Galois group Il and ~ is an analytlc II-invariant equivalence
relation. We say that ~ is a g-relation if r q(F) C M X M is a ciosed subset.
In this case I defines an analytic equivalence relation ~, on M. We say that ~
is a gq-proper equivalence relation if for any compact CCN the map
geop::(p'(C)NT)—>M is a proper map, where p,,p,: NXx N— N are the
natural projections.

LEMMA 5. Any q-proper equivalence relation is a g-relation.

Proor. Clear. a

If ~ is an analytic equivalence relation on N and C C N is a compact analytic
subvariety, we define C.={n €N , dc € Cs.t.c ~n}. It is clear that C. is an
analytic subvariety in N. If C ={n} we will write Q, instead of {n}..

PropoSITION 1. Let ACD° be a G”-invariant analytic subvariety A # D°
and ~ be a GY-invariant analytic q-relation on N = D —A where
g:N->M < X0 - p°(A) is the restriction of p” on N. Then there exists a
G -invariant analytic subvariety A C N such that dim A =dim Y and dimQ, =0
for any n €N - A.

ProoF. Define Ns={n €N |Q, is singular at n}. For any n €N — N;
define C(n)=dim T, (n) and take C =min.en-n,C(n). Define N =
{neN-N; ‘ C(n})> C} and take Ny = Nc U Ns. It is clear that N, is an analytic
G- -invariant subvariety of N = D* — A. As follows from Corollary 2 to Lemma
3,dim A <idim Y*. The same arguments show that dim Ny <3dim Y°. Consider

the subbundle W C Tp; on D§ “N- N, given by w ld"— Ty .(d”), where the
vertical stroke stands for “restriction”.

Lemma 6. There exists J C[1,- -, n] such that W = @@TW ]D“
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PrOOF OF LEMMA. Let a be the imbedding a : Dg— N and W’ = (W) be
the direct image. As codim Np, > codim Y° >2 and W is a locally free sheaf on
Dg, W is a coherent G°-sheaf on N ([13]). Consider W, = W** the double dual
of W'. It is a reflexive ([4]) G”-sheaf. Let j : N— D be the natural imbedding,
Wi =j*(W,). As W, is reflexive and codim A > 2, we see ([13]) that Wi is a
coherent G°-sheaf on D°.

Consider W, = W}* and the corresponding sheaf W, on X°. W, is a reflexive
sheaf and therefore V = j2(W,) is a coherent analytic sheaf on X° (as before
j° 1 X°— X° is the natural imbedding). By [12] V corresponds to an algebraic
sheaf V, on X¢ and therefore W, corresponds to an algebraic sheaf W,, on X°.
Let Z° ={z° €X° | W, is not locally free at z°}. Then Z°¢ is an algebraic
subvariety in X’ and Z° = p° (Z°)CD- is G°-invariant. By Lemma 3,
Z° = and therefore W, is locally free.

By the construction we have an imbedding W, l[)g 2% Tpo lpg. As
codim(D” — D§)> 1 we may extend &, to ¢ : W,— Tp.. Consider ¢ Wo— Ty
and ji(¢): V—jATp-). As we have seen before, V and (analogously) jo(Tp-)
are algebraic sheafs. Let Z, ={z, € X° I ®(W,) is not a subbundle of Tx. in any
neighbourhood of z\}. Then Z,C X is an algebraic subvariety and Z, =
p° '(Z)) is G°-invariant. Therefore, by Lemma 3, Z, = and so W, is a
G -invariant subbundle of Tpe.

Let now L, C Tx, be the algebraic subsheaf corresponding to W, C Txs.
Consider L = p*(L)C Tp. It is clear that L C T}, is a Ge-invariant subbundle of
Dyx. By lemma 10 in [5] there exist J C[1,---, n] such that L = EB.-E, T.p- Itis
clear now that W = W, ,Dg = EB,-E, T.p-. Lemma 6 is proved. )

Let H C G be a subgroup which satisfies the conditions of Proposition 2.1 and
'D#C D7 be defined as in §1. Consider 'D% N A. As dim A =dim Y <dim'Dyit
is a proper 'H” invariant subvariety in 'D¥,. It follows now from Corollary to
Lemma 1.2 that 'D%N A =. The same arguments show that ‘D% CDg. It is
clear now that the restriction ~ ,; of the equivalence relation ~ on 'D% such
that Wy =(P.e; Tipg, where Wy and T.pg are subbundles in Tpg defined
analogously to W and T, -. Since the Main Theorem is known for H it follows
from the proof of lemma 11 in [5] that J = . Therefore (). CN is a discrete set
for n € Dg. Define A={n € N |dimQ, >0}. Since AZN is a G°-invariant
analytic subvariety we have dim A =dim Y. Proposition 1 is proved.

§4. Let X be a complex Hilbert space. We denote by & (#) the graded
algebra of polynomial functions on #. Let P(3) = 9* — {0}/C* be the quotient
space. Then P(3¢) C Proj(s/(3)) and this induces the structure of a ringed space
on P(¥).
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On the other hand, # has a natural structure of a metric space. Let
s={he¥||h]|=1} and C={z €C||z|=1}. Then C naturally acts on the
metric space # and P(3) = S/C. So we can define a metric d(-,-)on P(¥)as a
quotient metric from S. This metric d comes from the Riemannian metric p on
¥ such that for any point V € P(¥) (i.e., for a line V in ) the corresponding
quadratic form p, on T, (P(%)) = #/V is given by pv(V', V") = (V', V") where
we identify #/V with the orthogonal complement of V in &.

We denote by #* the dual space to #. Then points of P(3*) are subspaces of
codimension one in .

Let X be a connected complex analytic manifold, ( = ()x) be the sheaf of
holomorphic differential forms of degree n = dim X and Q( = ) be the sheaf
of germs of measurable sections of (2. We denote by #(X)CH’(X,(Q) the
subspace of forms w € H(X, ) such that [xwA® < and define the scalar
product (w;, w3) = fxwirw, for w,w,€ ¥ (X). We also define #H(X)=
{o € H(X, ﬂ)’fxa“)/\af <}, It is well known (see [6]) that #(X) is a closed
subspace of a Hilbert space #(X). We denote by P(X) the projective space
P(X(X)*).

Consider now X as a 2r-dimensional C”-manifold and define the section px
of QA over X by

ux(x)= sup (wA®).
©EX)

(w, w)=1

It is called the Bergman volume on X. It is clear that ux is a nonnegative smooth
section of QA Q) which is invariant under the group G(X) of analytic auto-
morphisms of X. We will consider ux as a measure on X.

LEMMA 1. fxux =dim (X).

PrOOF. Letw,,: -, wy, 1 =N =, be an orthonormal basis for #(X). Then

p,x=§w,-/\a').-. d

i=1

LemMA 2. If X' CX is an open subset, then ux = pux on X'.

Proor. Follows immediately from the definition. d

Assume now that #(X) # {0}.

For any w € #(X) we define X, =Divisor of zeros of w. Consider
ve M. cxo X.. It is clear that V = {Zeros of ux}. Let Xo= X — V. For any
point x € X, we denote by ¥, C #(X) the subspace of w € {}(X) such that
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w, =0. It is clear that &, is a subspace of codimension one in #(X). That is, we
have a canonical map

Po : X()—') P(X)

It is clear that ¢, is analytic (i.e., @, is a map of ringed spaces). Consider
Px = @ 5(p). px is by the definition a pseudometric on X, which is called the
Bergman pseudo-metric. It is clear that

2

= Gzaz M Hx

Px

LEMMA 3. Let X be an open subspace of a complete complex manifold X such
that Y = X — X is a divisor with normal crossing. Then the restriction map
a : ¥(X) is an isomorphism.

Proor. It is clear that a is an imbedding. Now take some w € #(X). Let
Y, C Y be the set of smooth points of Y and y € Y,. Choose a neighbourhood U
of y in X such that (U, Uy)=(D’,D"'xD*) where Up=UNX, D=
{zec||z|=1}, D* =D —{0}. Then

w luo =@(z,t),dz A" - Adz,_ A dl

where z €D ',t ED* and

[ wona=[  letnrdu<e
Us D'~ ixD*

where du is the Lebesgue measure on D'™'X D*. We can write ¢(z,1)=
Sr-—t'@(z). It is clear now that the condition fp»-ixp-| @(2, 1) [*du < implies
¢@(z)=0for | <0. Therefore w is regular on Y. As codimz(Y —y,)>1 we see
that w is regular everywhere. O

COROLLARY. Let X, be an algebraic k-manifold and o, o, be two imbeddings
of k to C. Then dim ¥(X.) = dim #(X.) where X = (X. X).. SpecC)c.

Assume now that X is an open dense subset of a complete analytic space X
and Y = X — X is an analytic subvariety.

ProposiTION 1. For any ¢ > 0 there exists a compact C C X such that for any
unramified covering ¢ : Z — X we have [, w,pZ < ¢ -deg ¢, where U = X — C.

Let D(a)={z €C||z|< a}, D*(a)= D(a)—{0}. The proof of Proposition 1
is based on the following elementary



Vol. 44, 1983 ARITHMETIC VARIETIES 151

LemMa 4.  Consider the map ¢. : D*(1)— D*(1) given by z — 7. Then for
any ¢ >0 there exists § >0 such that

ff woay/n < e for all n.
@ J ¢ (D5

PrROOF. As is well known,

__4dz adz
HD1) (1_‘__ lz ’2)2~

Therefore

3 sm tdt 20n
fomow»“D“"z"ﬁ, - <inijs" U

CoROLLARY 1. For any &£ >0 there exists 6 >0 such that for any (possibly
disconnected) unramified covering ¢ :Z—>D*(1) we have [,-1p-s)pz <
€ -deg .

COROLLARY 2. Let X =D(1)y, X =D*(1y, Y=X-X. For any ¢ >0 there
exists an open neighbourhood U of Y in X such that for any unramified covering
¢:Z— X we have [, upz <e -dege.

Now we can prove Proposition 1. Because the statement of the proposition
involves only X we can assume that X is nonsingular and Y is a divisor with
normal crossing in X. Therefore, we can find a finite number of open sets V; C X,
1=i =N, such that:

(@) For any i, 1 =i = N, the pair (V;, V; N X) is isomorphic to (D(1), D(1)* X
D*(1y ) for some k, 0=k <r.

)y UL vioy.

Let U, C V, 1 =i = N be open sets as in Corollary 2. Take U = U, U, Then
U is an open neighbourhood of Y in X and for any unramified covering
¢ :Z— X we have

f_ #zgif_ ﬂzéif Revy = (eN)deg ¢.
Pa{) i=1 Jo Uy i=1 Jo '(Uy)

It is clear that we can take C = X — U. Proposition 1 is proved. a

COROLLARY (to the proof). Let ¢ : Z — X be any unramified Galois covering.
Then [xduz <, where du; is considered as a volume form on X.

Now let X be as in Proposition 1 and let p : X — X be an infinite unramified



152 D. KAZHDAN Ist. J. Math.

Galois covering with Galois group I'. Let I'=1,DI>,D---DI,D--- be a
sequence of normal subgroups of finite index in I' such that N =(e).
We define X, = X/I'; and h, = dim #(X)).

THEOREM 1. (a) hy <= for any L
(b) The sequence h /|I':T,] is bounded.
() If b J[T:T1] A0 then %(X)#{0}.

ProOF. For any l, px, is a I'-invariant measure on X,. Therefore px, = q%(w:)
where g, : X; — X is the canonical projection and p; is a measure on X. It follows
from Lemma 1 that [xu, = h /[T :T,].

To prove (a) and (b) take ¢ =1 and choose C as in Proposition 1.

As C is compact, we can find a finite number of subsets U; CX, 1 =i = N such
that

(a) there exists an analytic isomorphism ¢; : U, — D (1),

b Ule (DG))DC
It follows now from Lemma 2 that u, . =v, where » is a measure on
UM e, (DGY) given by v =3, ¢ ¥(uoay)-

It is clear that fcv = N [y touy < ®.

Therefore
hl/[l‘l‘llz‘[ },L1=J’ /.L1+f [.Lléf V+1
X C X-C C

This proves (a) and (b).

Assume now that h; /[I": '] 4 0. Choosing a subsequence we may assume that
h/[T:T,Jza >0 for all L Take ¢ =a/2 and choose a compact C as in
Proposition 1. Then

f Mlzj }M‘f /-Ll‘:hl/[r:rl]_f e Z €.
C X X-C xX-C

Consider now the sequence of functions w, /v on C. As C is compact, u; = v and
€ = [cu we may assume (choosing a subsequence) that there exists a sequence
of points X; € C such that

x;,—x, and %’(x,)—)a >0.

It is clear then that

%‘(xo)—>a for | —>w.
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Fix now a point %, € X such that p(%,) = x,. Consider a complete Riemannian
metric p on X and denote by j the induced metric on X. Define

X, ={% € X | (%0, £) < p (%0, v£) Vy ET: — {e}.

X, is a fundamental domain for the action of I, on X. Then the projection
p: : X — X induces an isomorphism between X, and an open dense subset in X;.

Now we can prove Theorem 1 (c). By the definition for any [ there exists
w; € #(X;) such that (v, @) =1 and (w; A& )(p: (%)) = ¢ (). Therefore (see §3
in [5]) there exists a compact neighbourhood U of %, in X and b > 0 such that
Joyor Ay Z b

Consider now the Hilbert space # of measurable square-integrable sections 7
of Q% and define n, € ¥ by 0| X, =pi(w), 7| X - X =0.

Since (n,n) = 1 we can find a weakly convergent subsequence 1, — 1, 1 € %,
It is easy to see that n is holomorphic on U, X, = X (i.e., n € #(X)) and that
fxmad 2 b.So #(X)#{0}. O

Consider now V = Uwe-x(x)X.,, N = X — V. Itis clear that V is a I'-invariant
analytic subvariety in X and therefore V =Ry (V) is an analytic subvariety in X.
Let M = X — V and q : N— M be the restriction of p on N. We define now a
[-invariant equivalence relation ~ on N by saying that

n, ~n, & forany w,, w, € ¥(X) such that n,, n, € X,, we have
wi _ E)_]
P (m)= w0, (n2).
It is clear that ~ is an analytic I'-invariant relation on N.

PROPOSITION 2.~ is a q-proper equivalence relation.

To clarify the ideas of the proof we consider first the special case. For any
n € N consider (), ={n'EN , n~n'}

LeMMa 5. Let n €N and T, ={y €T | yn €Q.}. Then T, is finite.

PROOFOFLEMMA 5. As ~ is a I-invariant relation we have ({1,)-y = {,, for
any y €TI. Therefore I'. =St({2,) and it is a subgroup in I'. Fix now some
w € #(X) such that n& X, and define a function y :I'— C by

o’
x(y)= o | y€r.

For y, €T, v, €T we have
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whm whn wn
X(ry2) = w n_(w" . ,.>
=22 L2 () ()
® lny @ |n X\72)" X"

because ny, ~ n. Therefore the restriction of y on I', is the multiplicative
character y : ", = C*.
It is clear that y : T, = C* does not depend on the choice of w € #(X).
Fix an open neighbourhood U of n in X such that (U,n)—— (D (1)r,0), and
Uy N U =@ forany y €T —{e}. Fix also w, € ¥(X) such that n & X,,. Then for
any w € ¥(X) we have

@)z | o'ra”
yerl JU

and there exists ¢ >0 such that

f WAD ZcC ﬂ(n) for any w € #(X).
u Wo

Therefore we have

1 - 1
E |X(7)|2§E , f w&/\waéz(wo,wo)<°°
yEI', yel, JU

and so I, is finite. a
Consider now the general case. Let C CN be a compact

Ac={n Ele.t.BcECs.t.n~c}.

We have to prove that ac:Ac— M is a proper map.

Assume that g is not proper. Then we can find two sequences (n;) and
(n)EN, 1=i < and two points n € N and m € M such that

(a) {(n:)}CN is a discrete subset,

(b) ni—=>n,EN for i >,

(c) mi~niforaliz=l,

(d) g(ni)—>m for i >,
Choose now an open neighbourhood U of m in M such that (U,m) is
analytically isomorphic to (D(1),0).

We may assume that g(n;)E€ U for all i.

Let U CN be a connected component of g "(U) such that Q, N U# & and fix
n €A, NU. Define yo= U Nq7'(m), yi = UNg(g(n)) for i =1. Then for
any i = 1 there exists y; €I such that y; = n; - v.. We may assume that y; # y; for
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i# j. Fix now a nonvanishing C*-volume form » on U and define 7 = ¢*(v) on
q7'(U). )

Also fix a nonvanishing C”-volume form 7' on a neighbourhood U’ of n,in N.
By the definition of N we can find w, € #(X) with (wo, wo) =1 such that
Ro, N¢, yEX,... As y; = yo, and ni— ng for i — » we may assume that n; € U’ for
any i =1 and:

(a) There exists a > 0 such that

(wkoo)(y‘)>a and (%’)(n’)>a forany iz1.
(b) There exists 8 >0 such that for any i =1 and any w € #(X)
j WAD zﬁ“’—“"(y.-) and J' WAG ;Bw(nﬁ).
o v o v
Consider now the sequence

dg WoA ll-)() (n)
-~ L A

Then

Therefore a; — 0 for i = ®. On the other hand

w&"‘/\a')gf(n‘) _ wa"/\a_)zl(n,)

WoA (1_)0 ! WoA a-’o

and therefore

w(‘{‘/\wo

( ,) - O)D/\wo(n;) . w&’-‘g@&‘(n‘_) ((1)0‘/‘;‘1_)0(ni)>_l

= Loh B0 ). Lohde ). ( °“"°(ni))_'é—-

Therefore
f_ wgma')g:;f wgmwai>ﬁ——“'5:“’5(n.)
X

2
a .
;——@—wo for i—>wx,

a;
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But

f w{{i/\a_)gi=f w()/\(l_)ozl.
X X

This contradiction proves Proposition 2.

§5. In this paragraph we will finish the proof of the Main Theorem.

Let G be a nonclassical simple Q-group such that D = K \ Gg is a Hermitian
symmetric space. Let I'C Gq be an arithmetic subgroup without elements of
finite order. Define X, X°, I'”, G° and D as in §1.

THEOREM 1. ¥(D°)#{0}.

Proor. Choose a sequence '=1",D---DT, D" - of normal subgroups of
finite index in [ such that (T, =(e). Then we can define the sequence
I"=I7{D---I'iD- - of normal subgroups in I'” such that X7 = D°/T"; where
X, = D/I'.. Define h, =dim H(X,), h;=dim H(X?).

LemMa 1. h3/[T°:T5]40 for n > =,

ProoFor LEmMA 1. It is clear that [I” : 7] = [I':T,] and as follows from the
corollary to Lemma 4.3, h7 = h,. So we have to prove that h, /[I":T,]40, for
n— o,

We will use the following result from the theory of representations which we
will prove in another paper.

THEOREM A. Let Gr be a semisimple real group, I' C Gx be an arithmetic
subgroup, I'=T11D---DTI, D -+ be a sequence of normal subgroups of finite
index in T such that (T, ={e}. Let (o, W) be an irreducible cuspidal
representation of Gg. Define h.(o) < dim Homg, (W, L(Gg/T,)). Then

h. (o)
[I‘:Fn]%o'

. de! .
Consider now W = (D) and let ¢ be the natural action of Gg on W. We can
consider o as a unitary representation of Gg and it is well known that o is
cuspidal.

LEMMA 2. h, = h.(0).

PrROOF. We can realize D as a bounded open subset in C" in such a way that
K acts linearly on C" - k — y(k).
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Take wo=dz,;A---Adz, Then w, € H(D), r(k)wo= x(k)wo, where y(k)=
det y(k) and w, is determined up to a scalar by this property. Define

L*(GT.)={f EL(GIT.)| f(kg) = x(k)f )}, Vk EK, gEgIT..

As is well known, L"(G/F,.)—;—){Lz-sections of ) over D/I',}. Consider now

the map B : Homg, (W, L*(G/T',))— {L*-sections of  over DT},
B(h)=¢(h(wy))  for h € Homg (W, L}(G/T,)).

It is clear that 8(h)C ¥ (X,) and it is not difficult to prove that

B8 : Home (W, L¥(X/T,))— #(X.)

is an isomorphism. a
Now Lemma 1 follows immediately from Theorem A and Lemma 2 and
Theorem 1 follows from Theorem 4.1 and Lemma 1. d

We will assume from now on that the Main Theorem is known for all groups H
with dim H <dim G.

Consider the Bergman volume pp- on D° and define V = {zeros of up-} as in
§4. Then VZD° is a G -invariant analytic subvariety.

If G is an anisotropic group, then it follows from Lemma 3.3 that V = 2. If G
is isotropic, we choose a pair (H, ¢) which satisfies conditions of Proposition 2.1
and consider a subvariety ‘D% CD¢ defined in Lemma 1.2.

LEMMA 3. 'DGNV =.

ProOF. It is clear that ‘D% N V C'D% is an H?-invariant subvariety. As we
have assumed that the Main Theorem is true for H, the Corollary to Lemma 1.2
is applicable and we see that either ‘DgN V =@ or 'DgC V. But the second
possibility will contradict Corollary 1 of Lemma 3.3. U

Let N=D°~V, M=X°—-p“(V), q: N— M be the restriction of p° and
~ be the equivalence relation defined in §4. By Proposition 4.2 ~ is a g-proper
analytic equivalence relation and therefore (by Proposition 3.1) there exists a
G-invariant analytic subset AC N such that dmA=dimY and Q, CN is a
discrete subset for n € No= N — A. By the definition the restriction of the
Bergman pseudometric pp- on N is a nondegenerate metric.

LemMA 4. 'DENA=(.
PROOF. As in the proof of Lemma 3 we see that 'Dy N A C'Dy is either

empty or is ‘D, itself. But the second possibility is excluded because dim (DN
A)=dimA =dim T <dim'D¥,. O



158 D. KAZHDAN Isr. J. Math.

Fix now a CM-point d, C'Dy CD and let D§E'D§C D be a point such that
p’(d8)=(p(do))” and consider the closure B of the orbit G°D§ in N,. pp-
defines a structure of a metric space (No, p) of No. So we may consider (B, p) as a
metric space.

LeMmMA 5. There exists ¢ > 0 such that the ball N.(d§) of radius ¢ around d§ in
N, is compact.

Proor. Clear.

ProposiTION 1. (B, p) is a complete metric space.

ProoF. By Lemma 5 we can find ¢ > 0 such that the ball B, (d§) of radius ¢
around d§ in B is compact. As p is G°-invariant a ball B,(d) C B is compact for

any d €{G°dg}. Therefore B, »(b) is a compact ball for any b € B. Proposition 1
is proved.

CoroLLARY 1. The group Aut B of isometries of (B, p) is a Lie group.

Proor. It is clear that (B, p) is a finite-dimensional metric space. Therefore
the corollary follows from Proposition 1 and the first corollary in §6.30f [9]. O

Let Gy be the closure of G° in Aut B. As G; is a closed subgroup in a Lie
group, it is also a Lie group.

LemMMAa 6. B CN, is a real submanifold.

PrOOF. By the definition G (A$) is dense in B. Therefore ([9]) Gx(d§) = B.
Lemma 6 now follows easily from.Lemma 5.

ProrosiTiION 2. B = D°.

Proor. It follows from Lemma 3.1 that the tangent subspace Ty(d5)C
Tp-(d3) is invariant under multiplication by V —1. As G° C G(D”) the same is
true for any point d €{G°dg§}. Therefore for any point b €B, Ts(b) is a
complex subspace in Tp-(b) and consequently B is a closed G°-invariant
analytic subvariety in N. By the construction B D'D¢, and therefore dim,B >
dimY. Using arguments from §3 we can easily conclude that B = D°. [

Now we can finish the proof of the Main Theorem. It follows from Proposition
2 that the conditions (a) and (b) from Proposition 1.1 are satisfied and it follows
from the corollary to Lemma 4.4 that the condition (c) is also satisfied. O
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