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ON ARITHMETIC VARIETIES II 

BY 

DAVID KAZHDAN' 

ABSTRACT 

An arithmetic variety is the quotient space of a symmetric space with complex 
structure by an arithmetic subgroup of the associated algebraic Lie group. It is 
shown that the variety obtained from an arithmetic variety by a base change 
corresponding to any automorphism of C is again an arithmetic variety. 

Introduction 

Let G be an algebraic simple Q-group, Ga the set of real points of G and 

K C G~ a maximal compact subgroup. 

We assume that there is a Ga-invariant complex structure on the symmetric 

space D = K \ GR and we will always consider D as a complex manifold. Let 

I" C Ga be an arithmetic subgroup without nontrivial elements of finite order and 

let Xr  %f D/F. Xr  has the natural structure of a smooth complex manifold. Such 

complex manifolds X = Xr will be called arithmetic varieties. It is knowh 

([ 1 ], [11]) that there exists an imbedding X--~ pN (C) such that the closure .,~ of X 

is a normal variety, and Y = )~ - X is a subvariety in pN. Moreover,  if dim D > 1 

then a multicanonical bundle lq | on X defines such an imbedding and in this 

case codim Y > 1. We will assume that dim D > 1 and that an imbedding X ~ pN 

is a multicanonical one. We will call X "the canonical completion of X " .  

By Chow's Theorem X is algebraic and we will denote by X'o the correspond- 

ing algebraic C-varieties. 

For any o" E Aut C we denote by Xg the algebraic variety obtained from 9~o by 

the base change and by X'~ the complex variety of C -points of J~g. We denote 

by X "  C ,,~'" the open subvariety which corresponds to X~" %f X ' g -  IT"g. 

MAIN THEOREM. For any tr E Aut C the variety X ~ is arithmetic. 
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It is easy to see (lemma 0 in [5]) that it suffices to prove the Main Theorem for 

torsion free subgroups. 

Let M be a reductive Q-group and q~ : H ~ G be an algebraic morphism. We 

say that q~ is admissible if 

(a) K~ d~=r ~o~I(q~R(HR) fq K) is a maximal compact subgroup of H, .  

(b) ff : D ,  ~ D is an imbedding where DH ~g KH \ HR. 
(C) The image qS(D~) is a complex submanifold of D. 

We say that G is a classical group if there exists an admissible morphism 

~o:G ~ Sp(2N, ) for some N. It is proved in [2] and [3] that 

(a) The Main Theorem is true for classical groups. 

(b) If G is a simple, nonclassical Q-group, then G = R~/o((~) where k is a 

totally real number field, (~ is an absolutely simple k-group of type De, e => 4 and 

G~ has factors of types D R and D ~  or (~ is of type E6 or E? and G is obtained 

from G by restriction of the scalar field from k. 

In the next paragraph we outline our approach to the proof of the Main 

Theorem and give a very sketchy proof in the classical case. 

REMARK. This theorem was proved in [5] for anisotropic groups and our 

proof will go along the same lines. As [5] is not an easily readable paper we will 

try to refer only to the first two paragraphs of [5]. We start by recalling some 

general facts. 

NO'rA'nON. (1) For any algebraic C-variety X we denote by Xc the set 

C-points of X considered as an analytic variety. 

(2) For any analytic variety X we denote by G(X)  the group of analytic 

transformations of X. 

(3) For any manifold X and a point x E X we denote by T• the tangent 

space to X at x. 

(4) For an arithmetic variety X we denote by )~ the canonical completion of 

X, by Y the complement Y = X - X and by j : X ~ 7( the natural imbedding. 

(5) For any group G we denote by e the identity element. 

(6) For any group G acting on a set S and a subset T C S  we denote by 

S tG(T)CG the stabilizer of T in G. 

I want to thank Phillip Griffiths, Barry Mazur, David Mumford and Boris 

Weisfeiler for very helpful discussion, and I want to thank Goro Shimura for 

showing me a gap in the first draft of this paper. 

w We start by recalling some concepts and results from [5]. For any 

cr E AutC we consider X" the complex variety corresponding to an algebraic 
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C-variety X~. We denote by 11 the intersection of all subgroups of finite index in 
po 

Try(X~ by the D ~ ~X ~ covering of X ~ corresponding to 11 and by 

F~ d~=f 7r,(X~)/i, ~ the Galois group of this covering. We denote by G(D ~) the 

group of analytic transformations of D ~ and identify F ~ with a subgroup of 

G(D~). 
For any g E Go we consider the complex variety R, %f D/F, ,  for F, = 

FN g-'Fg and two projections 

ql 
R, q2 ~ X  

which correspond to two evident imbeddings 

i 1 
F~ i~ I F .  

It is clear that q~, q2 are finite unramified coverings of X. Therefore there exists a 

unique algebraic C-variety /~8 and two unramified coverings 

^ 

such that 

ql X )  (tll)c Rs q, ~ = (-Rs)c ~ (X)c. 

For any tr • Aut C we denote by 

R;---~-~X" 

the diagram of complex varieties corresponding to 

Of course q~', q~ are finite unramified coverings of X ~ 

LEMMA. Construction 1. (a) R ~ defines some double F ~ M 8 in G (D o). 
(b) I,.Js~c, oM 8 is a subgroup in G ( X  ~) which we will denote by G ~ 

The construction and the proof are contained in w of [5]. 

Let H ~ ~ G be an admissible morphism, F C Go bo an arithmetic group, 

F u ~  ~p~(~0o(Ho)A F). It is clear that F ,  is an arithmetic subgroup in H~ and 

: DH ~ D identifies XH ~ DH/FH with an analytic subvariety in X = D/F. It is 
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well known that there exists an algebraic subvariety X~., in Xo such that 
clef X ~  . 

XH = (Xu.,)c. Let XT~ = (X~.o)c C be the corresponding subvariety in X ~ 
and 'DT~ be a connected component of (p~) ' (X~)  in D ~. 

LEMMA 2. (a) For any h E Ho the intersection Mh ao=f M~(h) 0 Stc~x-)('D~) is not 
empty. 

(b) The union 'H ~ d,=f U h ~ ' M h  is a subgroup in G ~. 

(c) There exists a normal subgroup A C H  ~ such that A CF7~, 'H  ~ --- H~/A  and 

' D ~ =  D ~ A .  

PROOF. Clear. [] 

COROLLARY. If the Main Theorem is true for H then 'D~ is a Hermitian 

symmetric space and 'H ~ is dense in G('D~r). 

PROOF. Also clear. [] 

PROPOSITION 1. Assume that: 

(a) The Bergman metric (see [6]) po" is not degenerate. 

(b) The closure G~ of G ~ in G ( D  ~) acts transitively on D ~. 

(c) There exists a G ~-invariant volume form/zo,  on D ~ such that f x- lxo~ < ~. 

Then X ~ is an arithmetic variety. 

PROOF. By the assumption D "  is a homogeneous complex variety with a 

nondegenerate Bergman metric. By [11] D = is a Hermitian symmetric space 

D ~ = K ~ \ GR. It is clear that dlzo- is G~ invariant volume ~, on DL Therefore 

It follows now from Margulis's theorem ([8]) that F" C G~ is an arithmetic 

subgroup. [] 
For G = Sp (2n, ) the Main Theorem was known long ago (in this case X 

may be interpreted as a moduli space M for polarized abelian varieties with 

additional rigidity structure and M ~ = M for all o" E Aut  C if F is an approp- 

riately chosen arithmetic subgroup). 

If G is a classical group, then an admissible morphism ~o : G--~ Sp (2N, ) 

induces the imbedding ~0 :X---~M. Therefore we have X~-- -~M"= M and 

'D~ C ~ where ~ is the Siegel upper "halfplane". In this case, instead of the 

Bergman metric Po- on 'D~, we can take the restriction of the Bergman metric p~e 

on 'Do. Although we cannot apply Proposition 1, we could finish the proof by 

making use of arguments from the second part of [5]. In any case, the Main 

Theorem is known [3] for classical groups. 
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Unfortunately for nonclassical groups, no modular interpretation for X is 

known and we will examine the conditions of Proposition 1 directly. 

REMARK In the casc when X is compact we can easily prove the Main 

Theorem using the Calabi-Einstein metric on X([16]). 

w We will assume from now on that a simple isotropic Q-group G is of type 

Rk/o((~) where k is a totally real number field and (~ is an absolutely simple 

k-group of type D~, l > 3 ,  such that G~ has DR and D r  factors or (~ is an 

absolutely simple k-group of type E~ or E,. We will call such G "our groups". 

As before, let K be a maximal compact subgroup in GR, D = K I G  be the 

corresponding Hermitian symmetric space, F C Go be an arithmetic subgroup 

without elements of finite order, X =D/I"  be the corresponding arithmetic 

variety, ..~ be the canonical compactification of X and Y = , ~ -  X. 

PROPOSITION 1. Let G be one of our groups. Then (a) codim Y > 3, (b) there 

exists a semisimple Q-group H and an admissible morphism ~o " H --~ G such that 

dim Y < d i m D ,  < d i m X  and there exists a torus T C H  such that (TR) is a 

compact Caftan subgroup of G~. 

We start the proof with the following 

LEMMA 1. Let G be one of our groups G = Rklo( G ). Then 

(et) I f  G is of type D, and a be the number of imbeddings k ' ~. R such that the 
corresponding real group GR is of type D ~( ~- SO ( 2 / -  2, 2)) and b be the number of 

imbeddings k ' , R such that (~R is of type D r (  ~- SO*(2)), then 

d i m c X = a ( 2 1 - 2 ) + b  l ( l - 1 )  and d i m c Y < a + b  ( l - 2 ) ( l - 3 )  
2 = 2 

(fl ) I f  t~ is of type E6, then 

d i m X = 1 6 . [ k : Q ]  and dimY_-<5[k:Q]. 

(~/) I f  t~ is of type ET, then 

d i m X = 2 7 [ k : Q ]  and d i m Y < 1 0 [ k : Q ] .  

This lemma follows immediately from theorem 4.13 in [7]. [] 

Part (a) from Proposition 1 follows immediately from this lemma. 

If G = Rk/o(O) is a simple Q-group and x is a distinguished vertex of the 

Dynkin diagram of r we denote by/~7/x C (~ the semisimple part of the Levy 

component Lx of the parabolic subgroup P in (~ which corresponds to x. (See 

[15].) Let 17x = Centralizer~(A;/x), Hx = Rklo(~/lx. f/x). 
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LEMMA 2. If  D = K \ GR is a Hermitian symmetric space and dimk f'x > 1, 

then the natural imbedding Hx ~ G is an admissible morphism. 

PROOF OF LEMMA 2. It is clear that ~'x is a reductive k-subgroup in O. Let 

k = Q be the algebraic closure of k. Since rk~(M,)= r k ~ ( ( ~ ) - l ,  we know that 

rk~ (f'~) =< 1. Therefore f'~ is a k-form of A ~. 

Consider V = R~/of"~ and M = Rk/Ql~Ix. Let S, be a maximal compact torus in 

V~ and S~_ be the one in MR. It is clear that S '~ S~$2 is a maximal compact torus 

in GR. Since the k-variety of maximal tori in 0 is a k-rational variety (see exp. 

XIV, th. 6.2 in SGA3), it is clear now that there exists a Q-torus T C H~ such that 

TR C GR is a maximal compact torus in GR. We take K C GR to be the maximal 

compact subgroup containing TR. Then tangent subspace To,,x(e )CDt~(e) to 

Dnx C D is invariant under multiplication by X/-~ 1. Therefore the same is true 

for all points d E DH, and D,,, is a complex submanifold of D. Lemma 2 is 

proved. ,~1 

To finish the proof of Proposition 1 we will point out for any of our groups G a 

vertex x satisfying conditions of Lemma 2 and such that dim DI,~ > dim Y. We 

will be using the classification of simple k-groups from [15]. 

If (~ is an isotropic k-group of type Dt and 

is the Dynkin diagram of G, then the vertex x second from the left is a 

distinguished one, and (as follows from the shape of the extended Dynkin 

diagram for Oi) x satisfies conditions of Lemma 2. It is clear that 

= 2a + b [  ( l - 3 ) ( l - 2 )  + l '~>dim Y. d i m D ,  
" \ 2 / 

(For l = 4 we take x to be the center of the Dynkin diagram.) 

If 0 is of type E6, then it follows from the table on page 59 in [15] that the 

index of 0 is either 

2E35 6.~ or 

2E2~ ~ or 6A 

2 16" 
~'6,2 
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LEMMA 3. If t~ is any k-group with index 2E~ then the symmetric space of GR 
is not Hermitian. 

PROOF. Let H C G be the anisotropic kernel of (~ ([15]). It acts on a 

maximal unipotent k-subgroup U of G. Since dim[ U, U] = 8, the action of H on 

[ U, U] identifies H with an orthogonal subgroup of Endk [ U, U]. Now it follows 

from the classical Hasse Principle that there exists a completion kv of k such 
that H ~) Spec kv is anisotropic, and therefore kv -~ R. The corresponding real 

group L = t~ (~)Speckv has the index tE~,~z and the corresponding symmetric 

space is not Hermitian. As L is a factor of (~R the symmetric space of OR also 

does not have an invariant complex structure. [] 

So we may restrict attention to groups with indices 2E3~ and 2E~"~. Let x be the 

left distinguished vertex. It is clear that x satisfies the conditions of Lemma 2 and 

dim D,. = 6. [k : Q] > dim Y. 

Consider now the case when (~ is of type E7. Then the index of (~ is either E3!2 
28 or ET._~. Let x be the right distinguished vertex. Then D,~ C D is a complex 

submanifold and dim D,.  > dim Y. Proposition 1 is proved. 

In the future, we will always assume that the Main Theorem is known for H. 

w We will study in this paragraph different G~'-invariant analytic objects on 

D -" 

But in the beginning we will restate some results from [5]. 

For any d E D we denote by Gd C Go the stabilizer of d in Go and by a'u the 

natural representation Xu : Gd ~ Aut To (d). 

Let d ~" E D"  be a point such that (p(d)y  = (p")(d"). Define Gao C G" to be 

the stabilizer of d% let Xu. : G~. --~ Aut To.(d ~) be defined in the same way as Xd 

and denote by au : To(d)--* Too(d ~) the composition 

a-t 

To(d) P', T• " ,  T• p" , Too(d~). 

LEMMA 1. There exists an isomorphism ~pd : Ga --> Gdo such that aa ~ Xd ( y ) = 

X~(~(V))o ad for all V E G~. 

This lemma is also proven in w of [5]. 

DEFINITION. We say that d E D is a CM-point if there exists a maximal 

Q-torus H in G such that /-/0 C G~. 

LEMMA 2. If  d is a CM-point in D, then the closure FI ~ ( in  the usual topology) 

of X~(G~)  in Aut To.(d ~) contains the multiplication by V ' - 1 .  
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PROOF. For any algebraic Q-torus H we denote by H the group of algebraic 

characters of H over C./.7/- is a free abelian group with a natural action of Aut C. 

We denote it by tr :/~ --*/~ for or @ AutC, /~ E/_7/. 

By definition we have (/~(h))" = ( /~ ' ) (h )  for any ~r E AutC,  /~ E/g/ and 

h E Ho. It is easy to observe (see, for example, lemma 18 in [5]) that for any 

t r E A u t C  there exists an automorphism c r ' h ~ h  of Hc such that /~"(h)= 

/~(h '~) for all h E/2/, h E Hc. Assume now that H .  is a compact group. Then it is 

a unique maximal compact subgroup of Hc and therefore 5" maps HR onto itself 

for all tr E Aut C. Let now d E D be a CM-point. We consider the representa- 

tion X~ = X~- ~ : H o ~ A u t  To~(d') .  As follows from Lemma 1 there exists a 
C-linear operator c : T o ( d ) ~  To, (d  ~) such that x~(h)= c ~ ~ -~ for 
h E Ho. We will consider X~ : Ho---*Aut To(d)  as a restriction of an algebraic 

homomorphism g,~ : Hc---~ Aut To(d)  and rewrite x~(h )=  c ox~ (h ' )oc - ' .  

Let H ~ be the connected component of identity in H .  and H~ = H,~ f3 H ~ H~. 

is dense in H ~ Therefore the closure / t "  of Xa~ (Gd-) contains c o x~(H~ o c-L 

Since H .  is compact H I  = H .  and ITI~D c o xd(H.)o c '. Since D admits an 

invariant complex structure there exists h0 E H .  such that X~ (ho) = X / -  1 Id. The 

lemma is proved. 

LEMMA 3. Let Z C D ~ be a nonempty complex analytic G % invariant subvari- 

ety such that Z "~ p ' ( Z ) C X "  is algebraic. Then Z = D L  

PROOF. The arguments which are used in the proof of lemma 3 in [5] are 
applicable here. [] 

COROLLARY 1. Let Z C D "  be a complex irreducible G"-invariant analytic 

subvariety such that dim Z_, > dim Y, where as always Y = f (  - X. Then 2 = D "  

or 2 =:~. 

PaOOF. Z = p~(Z,)CX ~ is an irreducible analytic variety. Therefore Z U 

Y'~ C 3~ ~ is *-analytic subvariety (cf. [10]) of X". By theorem 4.5 in [10] it is 

analytic and by Chow's Lemma algebraic subvariety in ,,Y". [] 

Consider now the real semisimple group G. ,  and write it as a product of 

simple groups G .  = Iq~.~ G~. Then D = lI~_j D~ where D. is the symmetric space 

for G, and the tangent bundle To decomposes into the direct sum To = 

~)7=, T~.o. This decomposition induces the decomposition Tx = @~_, T,,x. To 

prove algebraicity of T~.• we will use the following 

LEMMA 4. Let IQ1 be a normal projective algebraic variety, M C 1(4 be an open 

subset such that N d~=f 2(4 - M is analytic, codim~ N > 1 and all points of M are 

smooth. 

Let W C TM be an analytic subbundle. Then W is algebraic. 
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PROOF. Let / ~ p N  be a projective imbedding and k ={Dimension of a 

fibre of W}. Then W defines an analytic map 

~o : M --, Grk.N ~ {The variety of k-planes in pN}. 

By [14] ~0 is extendable to a meromorphic map ff :37/~Grk.N. By Chow's 

Lemma ~ is algebraic. [] 

So T~.• is an algebraic subsheaf of X and we can define decompositions 

Txo = @~=~ Z.xo and Too = (~:=~ T,.o~. 

DEFINITION. Let N be a complex variety and ~ be an equivalence relation 

on N. We say that ~ is analytic if [ ' ~ { ( n ~ , n z ) @ N x N I n ~ n 2  } is a closed 

analytic subvariety in N • N. Assume that N q ~ M is an unramified Galois 

covering with Galois group Il and ~ is an analytic II-invariant equivalence 
de[  

relation. We say that -- is a q-relation if F = q(f') C M x M is a closed subset. 

In this case F defines an analytic equivalence relation -M on M. We say that 

is a q-proper  equivalence relation if for any compact C C N the map 

q o p 2 : ( p i ' ( C ) A F ) - - , M  is a proper map, where p ~ , p 2 : N x N - - ~ N  are the 

natural projections. 

LEMMA 5. Any  q-proper equivalence relation is a q-relation. 

PROOF. Clear. [] 

If - is an analytic equivalence relation on N and C C N is a compact analytic 

subvariety, we define C_ = {n ~ N [ :lc E C s.t. c - n}. It is clear that C_ is an 

analytic subvariety in N. If C --{n} we will write f l ,  instead of {n}_. 

PROPOSITION 1. Let fit C D ~ be a GO-invariant analytic subvariety A # D ~ 
and ~ be a G~-invariant analytic q-relation on N ~ D " - f k  where 

q :N---~M J~ X O - p " ( f i t )  is the restriction of p~ on N. Then there exists a 
G"-invariant analytic subvariety A C N s u c h  that dim A _- dim Y a n d  dim fL  = 0 

for any n E N -  A. 

PROOF. Define Ns = {n E N I 1). is singular at n}. For any n E N - Ns 

d e f i n e C ( n ) = d i m T . . ( n )  and take C=min .~N_~ ,C(n ) .  Define Nc = 

{n E N - Ns I C ( n ) >  C} and take No = Nc U Ns. It is clear that No is an analytic 

G"-invariant subvariety of/V = D "  - 3.. As follows from Corollary 2 to Lemma 

3, dim ,,~ < ~, dim Y". The same arguments show that dim No < ~ dim YL Consider 

the subbundle if" C Ton on D~" %f N - No given by if" [~, .-- T.,e(d~),  where the 

vertical stroke stands for "restriction". 

LEMMA 6. There exists J C [1,.-  -, n ] such that I~ = (~ ,~ j  T~.o. Io~;. 
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PROOF OF LEMMA. Let a be the imbedding a :D~--~N and lg" %r a , ( f f ' )  be 
the direct image. As codim No > codim Y" > 2 and if' is a locally free sheaf on 

Dg, W is a coherent G~-sheaf on N ([13]). Consider if', ~f ff.vv the double dual 

of 'r It is a reflexive ([4]) G"-sheaf. Let j : N ~ D ~ be the natural imbedding, 

W', = j , ( W , ) .  As 'if', is reflexive and codim~_>2, we see ([13]) that Vr is a 

coherent G"-sheaf on DL 

Consider 15'2 = ff.~v and the corresponding sheaf W2 on X ". W2 is a reflexive 

sheaf and therefore V ~ j,(W2) is a coherent analytic sheaf on . ~  (as before 

i"  : X"  --~ . ~  is the natural imbedding). By [12] V corresponds to an algebraic 

sheaf Va on ) ~  and therefore W2 corresponds to an algebraic sheaf W2.a on X ". 

Let Z ~ = { z ~ E X ' I W z  is not locally free at z~}. Then Z ~ is an algebraic 

subvariety in X ~ and , ~  ~ p~- ' (Z~)CD '~ is G~-invariant. By Lemma 3, 
Z. * = ~ and therefore I~% is locally free. 

By the construction we have an imbedding I'~'2ID~ *~ Io~. As 

codim(D ~ - D ~ ) >  1 we may extend fro to ~ : W_,~ To~. Consider ~ : W 2 ~  Txo 

and/'.~(q~): V~j~.(To~). As we have seen before, V and (analogously) j~.(Too) 
are algebraic sheafs. Let Z~ = {z, E X ~ [ q~(W~) is not a subbundle of Tx~ in any 

neighbourhood of z,}. Then Z, C X ~ is an algebraic subvariety and Z,1%f 

p~ '(Z,) is G~-invariant. Therefore, by Lemma 3, Z, = Q  and so ff'_~ is a 
G~-invariant subbundle of Tt,~. 

Let now L, C Txo be the algebraic subsheaf corresponding to W_,.~ C Tx:. 

Consider/2 = p*(L) C To. It is clear that/2 C To is a Go-invariant subbundle of 

D• By lemma 10 in [5] there exist J C [ I , . . . ,  n] such that/2 = @,~ j  T~.o. It is 
clear now that I,V = if% I,~ = ( ~ , ~  T~.o~. Lemma 6 is proved. [] 

Let H C G be a subgroup which satisfies the conditions of Proposition 2.1 and 

'DT, C D" be defined as in w Consider 'D~ f/A. As dim/i. =< dim Y < dim 'DT, it 
is a proper 'H  ~ invariant subvariety in 'D~. It follows now from Corollary to 

Lemma 1.2 that 'D~f'l  A = O .  The same arguments show that ' D ~ C D L  It is 

clear now that the restriction ~ H of the equivalence relation ~ on 'D~ such 

that I~,', = (~)~JT~.,or, where ff'~ and T~.,or~ are subbundles in T,r)g~ defined 

analogously to W and T~,oo. Since the Main Theorem is known for H it follows 

from the proof of lemma 11 in [5] that J = ~ .  Therefore fl ,  C N is a discrete set 

for n ~ Dg. Define A = {n @ N ] dim FI~ > 0}. Since A ~ N is a G ~-invariant 

analytic subvariety we have dim A < dim Y. Proposition 1 is proved. 

w Let ~ be a complex Hilbert space. We denote by M ( ~ )  the graded 

algebra of polynomial functions on ~. Let P ( ~ )  %f ~ *  - {0}/C* be the quotient 

space. Then P ( ~ )  C Proj(M(~))  and this induces the structure of a ringed space 

on P(~) .  
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On the other hand, ~ has a natural structure of a metric space. Let 

S ={h e lllhll--1} and C = { z  ~ C l l z l  = 1}. Then C naturally acts on the 

metric space ~ and P (~ )  = S/C. So we can define a metric d( .,. ) on P ( ~ )  as a 

quotient metric from S. This metric d comes from the Riemannian metric p on 

such that for any point V E P ( ~ )  (i.e., for a line V in ~ )  the corresponding 

quadratic form p,, on Tv(P(~)) = Yg/V is given by pv(V', V") %f <V', V"> where 
we identify Y(/V with the orthogonal complement of V in ~. 

We denote by ~*  the dual space to ~. Then points of P(Y(*) are subspaces of 

codimension one in Y(. 

Let X be a connected complex analytic manifold, 12( = 12x) be the sheaf of 

holomorphic diilerential forms of degree n = dim X and 1)( = l~x) be the sheaf 

of germs of measurable sections of 12. We denote by ~ ( X )  CH~ the 

subspace of forms to E H~ 12) such that f x  to ̂  o3 < ~ and define the scalar 

product (to~,to2)~fxto~Atoz for to~,to~E~(X). We also define ~ ( X ) =  

{o3 ~ H~ I~)I fxo3 A o~ < ~}. It is well known (see [6]) that W(X) is a closed 

subspace of a Hilbert space ~ (X) .  We denote by P(X) the projective space 

P(~(X)*).  

Consider now X as a 2r-dimensional C=-manifold and define the section p,x 

of 12A~ over X by 

/zx (x) = sup (to A o3)~. 
~EII(X) 
(~,~)=1 

It is called the Bergman volume on X. It is clear that/zx is a nonnegative smooth 

section of 12 A ~ which is invariant under the group G(X)  of analytic auto- 

morphisms of X. We will consider /~x as a measure on X. 

LEMMA 1. fxl.tx =d im ~(X) .  

PROOF. Let to,,. �9 toN, 1 _-< N =< 0% be an orthonormal basis for ~(X) .  Then 

IXx = ~. toi A O5~. []  
i - 1  

LEMMA 2. I f  X '  C X is an open subset, then lZx, >-- Izx on X' .  

PROOF. Follows immediately from the definition. [] 

Assume now that ~ ( X )  ~ {0}. 

For any to~E ~ ( X )  we define X,  =Divisor of zeros of to. Consider 

V dc=f ( " ) , ~ m X , , .  It is clear that V = {Zeros of/Zx}. Let X0 = X -  V. For any 

point x E X0 we denote by ~ ,  C ~ ( X )  the subspace of to E 12(X) such that 
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~ox = 0. It is clear that ~ is a subspace of codimension one in ~ (X) .  That is, we 

have a canonical map 

q~,, : Xo---~ P(X). 

It is clear that ,~o is analytic (i.e., q~o is a map of ringed spaces). Consider 
de f  

p, = ~p*(p). p• is by the definition a pseudometric on Xo which is called the 

Bergman pseudo-metric. It is clear that 

c~ 2 
px = ~ in/~x. 

LEMMA 3. Let X be an open subspace of a complete complex manifold f~ such 

that Y dE X -  X is a divisor with normal crossing. Then the restriction map 

a : ~ ( X )  is an isomorphism. 

PROOF. It is clear that a is an imbedding. Now take some co E ~(X) .  Let 

Yo C Y be the set of smooth points of Y and y ~ Yo. Choose a neighbourhood U 

of y in ,,~ such that (U, U o ) = ( D ' , D ' - l x D  *) where U o = U M X ,  D =  

{z E C J l z 1 =< 1}, D* = D - {0}. Then 

oJ JUo = q~(z,t),dzt ^ . . .  ^ dz,_l ^ dt 

where z ~ D '-1, t E D* and 

fu o^ =fo Ir ~ < ~  
o r - l xD*  

where d/z is the Lebesgue measure on D'-~•  D*. We can write ,p(z , t )=  

E~.~ t'q~,(z). It is clear now that the condition SO"-'• I 'P(Z, t)12d0, < oo implies 

,p~(z) = 0 for l < 0. Therefore ~o is regular on Yo. As codim~(Y - yo) > 1 we see 

that co is regular everywhere. [] 

COROLLARY. Let Xo be an algebraic k-manifold and r or2 be two imbeddings 

of k to C. Then dim ~(X~) = dim ~Y(X2) where X, = (Xa ( ~ ,  Spec C)c. 

Assume now that X is an open dense subset of a complete analytic space ,~ 

and Y ~ X -  X is an analytic subvariety. 

PROPOSITION 1. For any e > 0 there exists a compact C C X such that for any 

unramilied covering q~ : Z --~ X we have f,-,~u)/xZ < e �9 deg r where U = X - C. 

Let D (a) = {z E C I I z I < a }, D* (a) = D (a) - {0}. The proof of Proposition 1 

is based on the following elementary 
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LEMMA 4. Consider the map ~o, : D*(1)--~D*(1) given by z---* ~". Then for 

any e > 0 there exists 8 > 0 such that 

f ~ f  I xo .o , /n<e  foralln.  
.~ .1(D*(,5)) 

PROOF. As is well known, 

Therefore 

/ . Z D - (  1 ) 
dz ^ d~ 

f fc ~ TM tdt 20 n 
/ z o . . ~  = 2r ~*'t _ t2x2) < In 1 / 8  " 

[]  

COROLLARY 1. For any e > 0 there exists 8 > 0 such that for any (possibly 

disconnected) unramified covering ~o:Z--~D*(1)  we have f~-,to.t~,iZz< 

e �9 deg ~o. 

COROLLARY 2. Let )~ = D(1)',  X = D*(1)', Y = f ( - X .  For any e > 0  there 

exists an open neighbourhood U of Y in f (  such that for any unramified covering 

~o : Z -~ X we have f~-,tu)/Zz < e �9 deg ~0. 

Now we can prove Proposition 1. Because the statement of the proposition 

involves only X we can assume that X is nonsingular and Y is a divisor with 

normal crossing in )f. Therefore,  we can find a finite number of open sets V~ C .~, 

1 _-< i _-< N, such that: 

(a) For any i, 1 _-< i _-< N, the pair (V~, V~ fq X)  is isomorphic to (D(1)r, D(1) k x 

D*(1) r-k) for some k, 0_-<k < r .  

(b) U~=, v; D r .  

Let  U~ C V~, 1 _-< i _-< N be open sets as in Corollary 2. Take U = U ~  U, Then 

U is an open neighbourhood of Y in ) (  and for any unramified covering 

~0 "Z  -~ X we have 

f t z  < p,z =< -'(uo 
-~(U) i = l  -~(Vj) i - ]  

It is clear that we can take C = X - U. Proposition I is proved. [] 

COROLLARY (to the proof). Let ~o : Z --~ X be any unramified Galois covering. 

Then f x  dp.z < oo, where dlxz is considered as a volume form on X. 

Now let X be as in Proposition 1 and let p : X - - ~ X  be an infinite unramified 
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Galois covering with Galois group F. Let  F = I ' ~ D F 2 D . . . D G D . . -  be a 

sequence  of normal subgroups of finite index in F such that (') F = (e). 

We define Xt = X/I'~ and h~ = dim ~f(X~). 

THEOREM 1. (a) ht < z for any 1. 
(b) The sequence h, / [ l ' :  F,] is bounded. 
(c) If  h,/[l': F , ] - ~ 0  then Y~(X')# {0}. 

PROOF. For  any l,/zx, is a F-invariant measure  on X~. The re fo re  ~x, = q*(/z~) 

where q~ : X~ --* X is the canonical  project ion and/x~ is a measure  on X. It follows 

from Lemm a  1 that fxtz~ = h , / [F :  G].  

To  prove (a) and (b) take ~ = 1 and choose C as in Proposi t ion 1. 

As C is compact ,  we can find a finite number  of subsets U~ C X, 1 =< i =< N such 

that 

(a) there  exists an analytic isomorphism ~ : U~ , D(1) ' ,  

(b) U~ ,  ~, '(D(')')D C. 
It follows now from Lemma  2 that tz~l,:<=v~,, where  v is a measure  on 

U; ' ( ,  ~, ' (D(~y)  given by v = E~"_-, ~*(/zm,r) .  

It is clear that  f c  v <= N fm,/2~ p.o.~. < ~. 
There fo re  

"<=re v + l .  

This proves (a) and (b). 
Assume now that h~/[F: G]-z4 0. Choosing a subsequence  we may assume that 

h~ / [F:G]>-a>O for all I. Take  e = a / 2  and choose a compact  C as in 

Proposi t ion 1. Then  

Consider  now the sequence of functions ~ / v  on C. As C is compact ,  k~ _-_6 v and 

e < J'ck~t we may assume (choosing a subsequence)  that there  exists a sequence  

of points Xt E C such that 

Xt ~ X0 

It is clear  then that 

and ~(xl)----~a > 0 .  
p 

( x 0 ) ~ a  for 1~oo .  
v 
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Fix now a point s .~ such that p(s Xo. Consider a complete Riemannian 

metric p on X and denote by ~ the induced metric on X. Define 

X', = {g E X [ #(go, g) < #(go, y.~) Vy ~ F, - {e}}. 

is a fundamental domain for the action of F~ on .~. Then the projection 

pt : -~ ~ .'~', induces an isomorphism between .X', and an open dense subset in X,. 

Now we can prove Theorem 1 (c). By the definition for any l there exists 

to~ E ~(X~)such that (to,, to,)= 1 and (to, ̂  o3,)(p, (go))=q 'f(/z,). Therefore (see w 

in [5]) there exists a compact neighbourhood O of .fo in )~ and b > 0 such that 

f , ~  to, ̂  o3, ~ b. 

Consider now the Hilbert space ~ of measurable square-integrable sections 77 

of fl~ and define T/, E b~ by 7/, I .~ = p*(tot). ~/, I - ~ - . ~  =0 .  

Since (T/, ~) = 1 we can find a weakly convergent subsequence 7/~, -~ ~, 7/E ~. 

It is easy to see that 77 is holomorphic on U,.x', = .~ (i.e., 77 E ~((.~)) and that 

n ^ --> b. So {0}. [ ]  

Consider now 12 d~ U ~ { X ~  -~., N -- 3~ - 12. It is clear that 12 is a F-invariant 

analytic subvariety in .~ and therefore V d~ F(12) is an analytic subvariety in X. 

Let M = X - V and q : N ~ M be the restriction of p on N. We define now a 

F-invariant equivalence relation ~ on N by saying that 

n, - n: r162 for any to,, to2 ~ ~( .~)  such that n,, n~ E X~ we have 

,.2tom (n,) = (n2). 

It is clear that - is an analytic F-invariant relation on N. 

PROPOSITION 2. ~ is a q-proper equivalence relation. 

To clarify the ideas of the proof we consider first the special case. For any 

n E N consider f~. = {n' E N I n - n'}. 

LEMMA 5. Let n E N and F. = { ~ / ~ F [  ~,n Ef t .} .  Then F. is finite. 

PROOF OF LEMMA 5. A s  --  is a F-invariant relation we have (f~.). 3, = f~.~ for 

any y ~ F. Therefore F. = Str(f~.) and it is a subgroup in F. Fix now some 

to (E ~(9~) such that n ~ 9~ and define a function X : F - - )  C by 

to~l 
X(~') = ~ , 

n 

For yl E F., ~'2 E F we have 

3 ' ~ F .  
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to n~l ~ n 

because n y l - n .  Therefore the restriction of X on F~ is the multiplicative 

character g : F~ --* C*. 

It is clear that )( : F, ~ C* does not depend on the choice of to E ~( ,~) .  

Fix an open neighbourhood U of n in ,~ such that ( U , n ) ~ ( D ( 1 ) r , O ) ,  and 

Uy O U = O for any y E F - {e}. Fix also too E ~ ( X )  such that n ~ -~o. Then for 

any to E ~ ( X )  we have 

~ to~A~ ~ (to, to)_= 
"y~F ./U 

and there exists c > 0 such that 

fv  toAo3 >C ---~ (n) I t o o  for any to E ~ ( X ) .  

Therefore  we have 

_ < 1  

and so F, is finite. []  

Consider now the general case. Let C C N be a compact 

Ac ={n E N Is.t. 3c E Cs.t .  n - c}. 

We have to prove that ac:Ac  ~ M is a proper map. 

Assume that q is not proper. Then we can find two sequences (n~) and 

(n ~) E N, 1 =< i < 0o and two points n E N and m E M such that 

(a) {(n,)}CN is a discrete subset, 

(b) n ; - - * n ~ N  for i-----~oo, 

(c) n~ ~ n'~ for all i > 1, 

(d) q(n,)--.*m for i ~ o o .  

Choose now an open neighbourhood U of m in M such that ( U , m )  is 

analytically isomorphic to (D(1)',O). 

We may assume that q(n~)E U for all i. 

Let O C N be a connected component of q-l(U) such that 1~ 0 D/.7/# O and fix 

n ~A,~N O. Define yo = O nq -~ (m) ,  y, = ONq-~(q(n,)) for  i_->l. Then for 

any i => 1 there exists y~ E F such that y, = n, �9 3;,. We may assume that y~ # yj for 
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i~j. Fix now a nonvanishing C| form v on U and define P = q*(v) on 

q-'(U). 
Also fix a nonvanishing C~-volume form 15' on a neighbourhood O' of n" in N. 

By the definition of N we can find too E ~/'(X) with (tOo, tOo)= 1 such that 
r no, n o, y ~ X,. As y~ ~ yo, and n ~ ~ n ~ for i ~ ~ we may assume that n ~ E U'  for 

a n y i = > l  and: 

(a) There exists a > 0 such that 

, ,  
(y~)>~ and I ~ ) t / 1 0 > a  fo rany  i_->l. 

(b) There exists/3 > 0 such that for any i _-> 1 and any tO E ~ ( 2 )  

f f ,- tO^o3 - > / ~ ( y ~ )  and tO^o3 >=tJ~tno. 
O O' 

Consider now the sequence 

a, dt.~/ tO0^TtOo (ni). 
/) 

Then 

~'~ a, = ~'~ to J'^ ~ " " < 1 ~'~ f u  to~,^ o3~, 
i~l i=1 17 {Yi) =/3 ~ol 

= -  too^too=~ too^ao=~. /3 "" v-l -'Y 

Therefore a~-* 0 for i--> oo. On the other hand 

to/~,^ o3/;, to/~,^ o3/f,, ,, 
- ( n , ) =  

WoA too r O~o {/1 i) 

and therefore 

to~'AtO~'. ,. tooA(-Oo. ,. to~'AO~'( )/tooAO)o. , '~-' ~, ~/1,)----V-~/1,). ~ -/1,-!,--W-v'i)] 

tooAO~o, r tooAO3o, ~ (tooAO3o ) - I  Or2 
= : ,  ( n , ) . ~ t y , ) . - - - - ~ - - ( n , )  _->--. 

ai 

Therefore 

2 
__>a fl---~oo for i--*~.  

ai 
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But 

f "A(..O~" = f ~OoAO.30 = 1. 

This contradict ion proves Proposi t ion 2. 

w In this paragraph we will finish the proof  of the Main Theorem.  

Let G be a nonclassical simple Q-group such that D = K \ G~ is a Hermi t ian  

symmetr ic  space. Let  F C Go be an ari thmetic subgroup without  e lements  of 

finite order.  Define X, X ~, I "~, G ~ and D ~ as in w 

THEOREM 1. ~ ( D " ) ~ { 0 } .  

PROOF. Choose  a sequence F = F, D �9 �9 �9 D F.  D �9 �9 �9 of normal  subgroups of 

finite index in F such that N F.  = (e). Then  we can define the sequence 

F ~ = F~rD �9 . .F.~D .. �9 of normal  subgroups in F" such that X~ = D~/F~ where 

X,  = D/F..  Define h, = dim H(X , ) ,  h~ = dim H(X~). 

LEMMA 1. h~/[F ~ :F;~]-/60 for n---~.  

PROOF OF LEMMA 1. It is clear that  [F ~" : F~] = [F : F,  ] and as follows from the 

corollary to L e m m a  4.3, h ~ =  h.. So we have to prove that h , / [ F :  F,]TZ,0, for 

n .---o. oo. 

We will use the following result f rom the theory of representat ions which we 

will prove in another  paper.  

THEOREM A. Let G~ be a semisimple real group, F C Ga be an arithmetic 

subgroup, F = F, D.  �9 �9 D F, D .  �9 �9 be a sequence of normal subgroups of finite 

index in F such that N F,  ={e}. Let (~r, W)  be an irreducible cuspidal 

representation of Ga. Define h.( cr ) ~f dim Homc. ,(W, L 2( Ga/F. ) ). Then 

h.(o,) 
[r .r .]  

Consider  now W do~ Yf(D) and let cr be the natural action of Ga on W. We can 

consider  tr as a unitary representat ion of G,, and it is well known that cr is 

cuspidai. 

LEMMA 2. h. = h,(o ' ) .  

PROOF. We can realize D as a bounded  open  subset in C" in such a way that 

K acts linearly on C" �9 k ~ 7 (k ) .  
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Take O~o = dz,^. . .adz, .  Then woe Y~(D), ~'(k)wo=g(k)~oo, where )t,(k) = 

det y(k) and oJo is determined up to a scalar by this property. Define 

L'(G/F.)={fEL2(G/F.){ f (kg)=x(k) f (g , )} ,  Vk EK, ~, Gg/F,. 

As is well known, L~(G/F.)--~{L2-sections of ~ over D/F,}.  Consider now 
the map /3:Homc~(W, L2(G/F,))~{L2-sections of 1~ over D/F,}, 

/3(h) = q~(h(o~o)) for h E Home,(W, L2(G/F,)). 

It is clear that /3(h)CY((X,) and it is not difficult to prove that 

/3 : Hom,a,(W, L2(X/F,))~ Yg(X,) 

is an isomorphism. [] 

Now Lemma 1 follows immediately from Theorem A and Lemma 2 and 

Theorem 1 follows from Theorem 4.1 and Lemma 1. [] 

We will assume from now on that the Main Theorem is known for all groups H 

with dim H < dim G. 

Consider the Bergman volume p.o~ on D"  and define I2 = {zeros of ~,o~} as in 

w Then 12~D" is a G~-invariant analytic subvariety. 

If G is an anisotropic group, then it follows from Lemma 3.3 that 12 = 0 .  If G 

is isotropic, we choose a pair (H, q~) which satisfies conditions of Proposition 2.1 

and consider a subvariety 'D~CD ~ defined in Lemma 1.2. 

LEMMA 3. 'D~N 12=O.  

PROOF. It is clear that ' D u N  Q C D,,  is an H"-invariant subvariety. As we 

have assumed that the Main Theorem is true for H, the Corollary to Lemma 1.2 

is applicable and we see that either 'D~A 12 = O or 'D~C 12. But the second 

possibility will contradict Corollary 1 of Lemma 3.3. [] 
Let N - D"  - 12, M = X" - p" (I9), q : N ~ M be the restriction of p" and 

be the equivalence relation defined in w By Proposition 4.2 - is a q-proper 

analytic equivalence relation and therefore (by Proposition 3.1) there exists a 

G-invariant analytic subset A C N such that dim A_-< dim Y and 1~, C N is a 

discrete subset for n ~_ No ~ N - A .  By the definition the restriction of the 

Bergman pseudometric po~ on No is a nondegenerate metric. 

LEMMA 4. 'DT, AA = 0 .  

PROOF. As in the proof of Lemma 3 we see that ' /9.  f l A C ' D ~  is either 

empty or is 'D~ itself. But the second possibility is excluded because dim ( 'D~ fl 

A) =< dim A =< dim T < dim'D~.  [] 
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Fix now a CM-point do C'Dn C D  and let D~E 'D~CD ~ be a point such that 

p~'(d~) = (p(d0)) ~ and consider the closure B of the orbit G'Dg in No. poo 

defines a structure of a metric space (No, p) of No. So we may consider (B, p) as a 

metric space. 

L~MMA 5. There exists e > 0 such that the ball N, ( d ~) of radius e around d ~ in 

No is compact. 

PROOF. Clear. 

PROPOSITION 1. (B, #) is a complete metric space. 

PROOF. By Lemma 5 we can find e > 0  such that the ball B,(dg) of radius e 

around d~ in B is compact. As p is G"-invariant a ball B~ (d) C B is compact for 

any d E {G~dg}. Therefore B,/2(b) is a compact ball for any b E B. Proposition 1 
is proved. 

COROLLARY 1. The group A u t B  o[ isometries of (B,p) is a Lie group. 

PROOF. It is clear that (B, p) is a finite-dimensional metric space. Therefore 

the corollary follows from Proposition 1 and the first corollary in w of [9]. [] 

Let GB be the closure of G ~ in Aut B. As Gs is a closed subgroup in a Lie 

group, it is also a Lie group. 

LEMMA 6. B C No is a real submanifold. 

PROOF. By the definition G~(A~) is dense in B. Therefore ([9]) G~(d~) = B. 
Lemma 6 now follows easily f rom.Lemma 5. 

PROPOSmON 2. B = D~. 

PROOF. It follows from Lemma 3.1 that the tangent subspace TB(d~;)C 

TD-(dg) is invariant under multiplication by N / -  1. As G ~ C G(D ~ the same is 

true for any point d~{G~d~}. Therefore for any point b ~ B ,  TB(b) is a 

complex subspace in To,(b) and consequently B is a closed G~-invariant 

analytic subvariety in N. By the construction B D 'D~,, and therefore dim~B > 

dim Y. Using arguments from w we can easily conclude that B = D ~. [] 

Now we can finish the proof of the Main Theorem. It follows from Proposition 

2 that the conditions (a) and (b) from Proposition 1.1 are satisfied and it follows 

from the corollary to Lemma 4.4 that the condition (c) is also satisfied. [] 
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